19 research outputs found

    Improve the Usability of Polar Codes: Code Construction, Performance Enhancement and Configurable Hardware

    Full text link
    Error-correcting codes (ECC) have been widely used for forward error correction (FEC) in modern communication systems to dramatically reduce the signal-to-noise ratio (SNR) needed to achieve a given bit error rate (BER). Newly invented polar codes have attracted much interest because of their capacity-achieving potential, efficient encoder and decoder implementation, and flexible architecture design space.This dissertation is aimed at improving the usability of polar codes by providing a practical code design method, new approaches to improve the performance of polar code, and a configurable hardware design that adapts to various specifications. State-of-the-art polar codes are used to achieve extremely low error rates. In this work, high-performance FPGA is used in prototyping polar decoders to catch rare-case errors for error-correcting performance verification and error analysis. To discover the polarization characteristics and error patterns of polar codes, an FPGA emulation platform for belief-propagation (BP) decoding is built by a semi-automated construction flow. The FPGA-based emulation achieves significant speedup in large-scale experiments involving trillions of data frames. The platform is a key enabler of this work. The frozen set selection of polar codes, known as bit selection, is critical to the error-correcting performance of polar codes. A simulation-based in-order bit selection method is developed to evaluate the error rate of each bit using Monte Carlo simulations. The frozen set is selected based on the bit reliability ranking. The resulting code construction exhibits up to 1 dB coding gain with respect to the conventional bit selection. To further improve the coding gain of BP decoder for low-error-rate applications, the decoding error mechanisms are studied and analyzed, and the errors are classified based on their distinct signatures. Error detection is enabled by low-cost CRC concatenation, and post-processing algorithms targeting at each type of the error is designed to mitigate the vast majority of the decoding errors. The post-processor incurs only a small implementation overhead, but it provides more than an order of magnitude improvement of the error-correcting performance. The regularity of the BP decoder structure offers many hardware architecture choices. Silicon area, power consumption, throughput and latency can be traded to reach the optimal design points for practical use cases. A comprehensive design space exploration reveals several practical architectures at different design points. The scalability of each architecture is also evaluated based on the implementation candidates. For dynamic communication channels, such as wireless channels in the upcoming 5G applications, multiple codes of different lengths and code rates are needed to t varying channel conditions. To minimize implementation cost, a universal decoder architecture is proposed to support multiple codes through hardware reuse. A 40nm length- and rate-configurable polar decoder ASIC is demonstrated to fit various communication environments and service requirements.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140817/1/shuangsh_1.pd

    Isolation and Characterization of a Novel Salmonella Phage vB_SalP_TR2

    Get PDF
    Salmonella is a widely distributed foodborne pathogen. The use of Salmonella phages as biocontrol agents has recently gained significant interest. Because the Salmonella genus has high diversity, efforts are necessary to identify lytic Salmonella phages focusing on different serovars. Here, five Salmonella phages were isolated from soil samples, and vB_SalP_TR2 was selected as a novel phage with high lytic potential against the host Salmonella serovar Albany, as well as other tested serovars, including Corvallis, Newport, Kottbus, and Istanbul. Morphological analyses demonstrated that phage vB_SalP_TR2 belongs to the Podoviridae family, with an icosahedral head (62 ± 0.5 nm in diameter and 60 ± 1 nm in length) and a short tail (35 ± 1 nm in length). The latent period and burst size of phage vB_SalP_TR2 was 15 min and 211 PFU/cell, respectively. It contained a linear dsDNA of 71,453 bp, and G + C content was 40.64%. Among 96 putative open reading frames detected, only 35 gene products were found in database searches, with no virulence or antibiotic resistance genes being identified. As a biological control agent, phage vB_SalP_TR2 exhibited a high temperature and pH tolerance. In vitro, it lysed most S. Albany after 24 h at 37°C with multiplicities of infection of 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100. In food matrices (milk and chicken meat), treatment with phage vB_SalP_TR2 also reduced the number of S. Albany compared with that in controls. These findings highlighted phage vB_SalP_TR2 as a potential antibacterial agent for the control of Salmonella in food samples

    Chemistry of new particle formation and growth events during wintertime in suburban area of Beijing : Insights from highly polluted atmosphere

    Get PDF
    The high frequency of new particle formation (NPF) events observed under polluted atmospheric conditions is still poorly understood. To improve our understanding of NPF and its effects, the particle number size distribution (3-1000 nm) and submicron particle chemical composition were measured from 4 November 2017 to 17 January 2018 in suburban Beijing. During this intense campaign, 22 NPF events were identified with a frequency of 29%, including 11 cases that occurred under "clean" conditions (C-NPF) and 11 cases that occurred under "polluted" conditions (P-NPF). The observed formation rate (J(3)) and condensation sink were 4.6-148.9 cm(-3).s(-1) and 0.01-0.07 s(-1), and the majority of NPF events occurred when the condensation sink (CS) values below 0.03 s(-1), indicating that condensation vapor likely constitutes the critical limiting factor for NPF events. The correlations between log J(3) and [H2SO4] that close to previous CLOUD experimental results in the majority of NPF events (68%) suggest the high nucleation rates (up to 100 cm(-3).s(-1)) would be attributed by the amines that enhancing sulfuric acid nucleation, while the reminding cases (32%) possibly attributed to the H2SO4-NH3 clustering mechanism, which is supported by the theoretical expectations for H2SO4 nucleation with NH3 simulated by the MALTE_BOX model. The observed growth rate varied from 4.9 to 37.0 mm.h(-1), with the dominant contribution (>60%) from sulfuric acid during the early phases of growth (similar to 4 nm), which was also sufficient to explain the observed Q(GR) for 50 nm)Peer reviewe

    Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin

    Get PDF
    Hydroxyl (OH) radicals, nitrate (NO3) radicals and ozone (O-3) play central roles in the troposphere because they control the lifetimes of many trace gases that result from anthropogenic and biogenic origins. To estimate the air chemistry, the atmospheric reactivity and oxidation capacity were comprehensively analyzed based on a parameterization method at a suburban site in Xianghe in the North China Plain from 6 July 2018 to 6 August 2018. The total OH, NO3 and O-3 reactivities at the site varied from 9.2 to 69.6, 0.7 to 27.5 and 3.3 x 10(-4 )to 1.8 x 10(-2) s(-1) with campaign-averaged values of 27.5 +/- 9.7, 2.2 +/- 2.6 and 1.2 +/- 1.7 x 10(-3) s(-1) (+/- standard deviation), respectively. NOx (NO + NO2) was by far the main contributor to the reactivities of the three oxidants, with average values of 43 %-99 %. Alkenes dominated the OH, NO3 and O-3 reactivities towards total nonmethane volatile organic compounds (NMVOCs), accounting for 42.9 %, 77.8 % and 94.0 %, respectively. The total OH, NO3 and O-3 reactivi- ties displayed similar diurnal variations with the lowest values during the afternoon but the highest values during rush hours, and the diurnal profile of NOx appears to be the major driver for the diurnal profiles of the reactivities of the three oxidants. A box model (a model to Simulate the concentrations of Organic vapors, Sulfuric Acid and Aerosols; SOSAA) derived from a column chemical transport model was used to simulate OH and NO3 concentrations during the observation period. The calculated atmospheric oxidation capacity (AOC) reached 4.5 x 10(8) molecules cm(-3) s(-1), with a campaign-averaged value of 7.8 x 10 7 molecules cm(-3) s(-1) dominated by OH (7.7 x 10(7) molecules cm(-3) s(-1), 98.2 %), 0 3 (1.2 x 10(6) molecules cm(-3) s(-1), 1.5 %) and NO3 (1.8 x 10(5) molecules cm(-3) s(-1), 0.3 %). Overall, the integration of OH, NO3 and O-3 reactivities analysis could provide useful insights for NMVOC pollution control in the North China Plain. We suggest that further studies, especially direct observations of OH and NO3 radical concentrations and their reactivities, are required to better understand trace gas reactivity and AOC.Peer reviewe

    Efficient Post-Processors for Improving Error-Correcting Performance of LDPC Codes

    No full text

    Significant decreases in the volatile organic compound concentration, atmospheric oxidation capacity and photochemical reactivity during the National Day holiday over a suburban site in the North China Plain

    Get PDF
    To what extent anthropogenic emissions could influence volatile organic compound (VOCs) concentrations and related atmospheric reactivity is still poorly understood. China's 70th National Day holidays, during which anthropogenic emissions were significantly reduced to ensure good air quality on Anniversary Day, provides a unique opportunity to investigate these processes. Atmospheric oxidation capacity (AOC), OH reactivity, secondary transformation, O-3 formation and VOCs-PM2.5 sensitivity are evaluated based on parameterization methods and simultaneous measurements of VOCs, O-3, NOx, CO, SO2, PM2.5, JO(1)D, JNO(2), JNO(3) carried out at a suburban site between Beijing and Tianjin before, during, and after the National Day holiday 2019. During the National Day holidays, the AOC, OH reactivity, O-3 formation potential (OFP) and secondary organic aerosol formation potential (SOAP) were 1.6 x 10(7) molecules cm(-3) s(-1), 41.8 s(-1), 299.2 mg cm(-3) and 1471.8 mg cm(-3), respectively, which were 42%, 29%, 47% and 42% lower than pre-National Day values and -12%, 42%, 36% and 42% lower than post-National Day values, respectively. Reactions involving OH radicals dominated the AOC during the day, but OH radicals and O-3 reactions at night. Alkanes (the degree of unsaturation = 0, (D, Equation (1)) accounted for the largest contributions to the total VOCs concentration, oxygenated VOCs (OVOCs; DPeer reviewe

    Neutral cholic acid–coumarin conjugate exhibit excellent anion binding properties by cooperative aryl CH and amide NH segments

    No full text
    <p>A neutral cholic acid–coumarin conjugate was developed for anion recognition. It is revealed by the experimental and theoretical results that the coumarin group can provide CH segments as hydrogen bond donors by cooperation with the adjoining amide NH segments. With excellent biocompatibility, this receptor with coumarin as fluorescence sensors also have the potential to be used as an efficient and non-destructive probe for anion detection in living cells. This work displays a new insight into the importance of coumarin group as anion recognition group, which is not well presented so far.</p

    The Memory of Rice Response to Spaceflight Stress: From the Perspective of Metabolomics and Proteomics

    No full text
    The stress response of plants to spaceflight has been confirmed in contemporary plants, and plants retained the memory of spaceflight through methylation reaction. However, how the progeny plants adapt to this cross-generational stress memory was rarely reported. Here, we used the ShiJian-10 retractable satellite carrying Dongnong416 rice seeds for a 12.5-day on-orbit flight and planted the F2 generation after returning to the ground. We evaluated the agronomic traits of the F2 generation plants and found that the F2 generation plants had no significant differences in plant height and number of tillers. Next, the redox state in F2 plants was evaluated, and it was found that the spaceflight broke the redox state of the F2 generation rice. In order to further illustrate the stress response caused by this redox state imbalance, we conducted proteomics and metabolomics analysis. Proteomics results showed that the redox process in F2 rice interacts with signal transduction, stress response, and other pathways, causing genome instability in the plant, leading to transcription, post-transcriptional modification, protein synthesis, protein modification, and degradation processes were suppressed. The metabolomics results showed that the metabolism of the F2 generation plants was reshaped. These metabolic pathways mainly included amino acid metabolism, sugar metabolism, cofactor and vitamin metabolism, purine metabolism, phenylpropane biosynthesis, and flavonoid metabolism. These metabolic pathways constituted a new metabolic network. This study confirmed that spaceflight affected the metabolic changes in offspring rice, which would help better understand the adaptation mechanism of plants to the space environment
    corecore